In all the preceding chapters we have focused primarily on thermodynamic systems comprising pure substances. However, in all of nature, mixtures are ubiquitous. In chemical process plants – the ultimate domain of application of the principles of chemical engineering thermodynamics – matter is dominantly processed in the form of mixtures. Process streams are typically comprised of multiple components, very often distributed over multiple phases. Separation or mixing processes necessitate the use of multiple phases in order to preferentially concentrate the desired materials in one of the phases. Reactors very often bring together various reactants that exist in different phases. It follows that during mixing, separation, inter-phase transfer, and reaction processes occurring in chemical plants multi-component gases or liquids undergo composition changes. Thus, in the thermodynamic description of such systems, in addition to pressure and temperature, composition plays a key role.
Further, whenever multiple phases are present in a system, material and energy transfer occurs between till the phases are in equilibrium with each other, i.e., the system tends to a state wherein the all thermal, mechanical and chemical potential (introduced earlier in section 1.4) gradients within and acrossall phases cease to exist.
The present chapter constitutes a systematic development of the concept of a new class of properties essential to description of real mixtures, as well of the idea of the chemical potential necessary for deriving the criterion of phase and chemical reaction equilibrium. Such properties facilitate the application of the first and second law principles to quantitatively describe changes of internal, energy, enthalpy and entropy of multi-component and multiphase systems.
Of the separate class of properties relevant to multi-component and multi-phase systems, the partial molar property and the chemical potential are particularly important. The former is used for describing behaviour of homogeneous multi-component systems, while the latter forms the fundament to description equilibrium in multi-phase, as well as reactive systems.
As in the case of pure gases, the ideal gas mixture acts as a datum for estimating the properties of real gas mixtures. The comparison of the properties of the real and ideal gas mixtures leads to the introduction of the concept of fugacity, a property that is further related to the chemical potential. Fugacity may also be expressed as a function of volumetric properties of fluids. As we will see, the functional equivalence of fugacity and the chemical potential provides a convenient pathway for relating the temperature, pressure and phase composition of a system under equilibrium.
In the last chapter it was demonstrated that residual properties provide very suitable means of estimating real gas properties. But as pointed out its usage for description of liquid states is not convenient. This difficulty is overcome by the formulation of a concept of ideal solution behaviour, which serves as a datum for estimating properties of real liquid solutions. The departure of the property of a real solution from that of an ideal one is termed as excess property. In other words, the excess property plays a role similar to that of residual property. In the description of solution behaviour at low to moderate pressures, we employ yet another property, the activity coefficient; which originates from the concept of fugacity. The activity coefficient may also be related to the excess Gibbs energy. It is useful not only as a measure of the extent of non-ideality of a real solution but also, more significantly in describing phase equilibria at low to moderate pressures.
Further, whenever multiple phases are present in a system, material and energy transfer occurs between till the phases are in equilibrium with each other, i.e., the system tends to a state wherein the all thermal, mechanical and chemical potential (introduced earlier in section 1.4) gradients within and acrossall phases cease to exist.
The present chapter constitutes a systematic development of the concept of a new class of properties essential to description of real mixtures, as well of the idea of the chemical potential necessary for deriving the criterion of phase and chemical reaction equilibrium. Such properties facilitate the application of the first and second law principles to quantitatively describe changes of internal, energy, enthalpy and entropy of multi-component and multiphase systems.
Of the separate class of properties relevant to multi-component and multi-phase systems, the partial molar property and the chemical potential are particularly important. The former is used for describing behaviour of homogeneous multi-component systems, while the latter forms the fundament to description equilibrium in multi-phase, as well as reactive systems.
As in the case of pure gases, the ideal gas mixture acts as a datum for estimating the properties of real gas mixtures. The comparison of the properties of the real and ideal gas mixtures leads to the introduction of the concept of fugacity, a property that is further related to the chemical potential. Fugacity may also be expressed as a function of volumetric properties of fluids. As we will see, the functional equivalence of fugacity and the chemical potential provides a convenient pathway for relating the temperature, pressure and phase composition of a system under equilibrium.
In the last chapter it was demonstrated that residual properties provide very suitable means of estimating real gas properties. But as pointed out its usage for description of liquid states is not convenient. This difficulty is overcome by the formulation of a concept of ideal solution behaviour, which serves as a datum for estimating properties of real liquid solutions. The departure of the property of a real solution from that of an ideal one is termed as excess property. In other words, the excess property plays a role similar to that of residual property. In the description of solution behaviour at low to moderate pressures, we employ yet another property, the activity coefficient; which originates from the concept of fugacity. The activity coefficient may also be related to the excess Gibbs energy. It is useful not only as a measure of the extent of non-ideality of a real solution but also, more significantly in describing phase equilibria at low to moderate pressures.
6.1 Partial Molar Property
| |||||||||||||||||||||||||||||||||||||||||||||||||||
We consider first the case of a homogenous (single-phase), open system that can interchange matter with its surroundings and hence undergo a change of composition. Therefore, the total value of any extensive property
![]() ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | (6.1) | ||||||||||||||||||||||||||||||||||||||||||||||||||
Where ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | (6.2) | ||||||||||||||||||||||||||||||||||||||||||||||||||
Taking the total derivative for both sides of eqn. 6.1: | |||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | (6.2) | ||||||||||||||||||||||||||||||||||||||||||||||||||
Where, subscript n indicates that all mole numbers are held constant and subscript ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | (6.3) | ||||||||||||||||||||||||||||||||||||||||||||||||||
(the subscript x denotes differential at constant composition | |||||||||||||||||||||||||||||||||||||||||||||||||||
Where:![]()
| (6.4) |